TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence.

نویسندگان

  • Ilana Chefetz
  • Ayesha B Alvero
  • Jennie C Holmberg
  • Noah Lebowitz
  • Vinicius Craveiro
  • Yang Yang-Hartwich
  • Gang Yin
  • Lisa Squillace
  • Marta Gurrea Soteras
  • Paulomi Aldo
  • Gil Mor
چکیده

Primary ovarian cancer is responsive to treatment, but chemoresistant recurrent disease ensues in majority of patients. Recent compelling evidence demonstrates that a specific population of cancer cells, the cancer stem cells, initiates and sustains tumors. It is therefore possible that this cell population is also responsible for recurrence. We have shown previously that CD44+/MyD88+ epithelial ovarian cancer stem cells (CD44+/MyD88+ EOC stem cells) are responsible for tumor initiation. In this study, we demonstrate that this population drives tumor repair following surgery- and chemotherapy-induced tumor injury. Using in vivo and in vitro models, we also demonstrate that during the process of tumor repair, CD44+/MyD88+ EOC stem cells undergo self-renewal as evidenced by upregulation of stemness-associated genes. More importantly, we show that a pro-inflammatory microenvironment created by the TLR2-MyD88-NFκB pathway supports EOC stem cell-driven repair and self-renewal. Overall, our findings point to a specific cancer cell population, the CD44+/MyD88+ EOC stem cells and a specific pro-inflammatory pathway, the TLR2-MyD88-NFκB pathway, as two of the required players promoting tumor repair, which is associated with enhanced cancer stem cell load. Identification of these key players is the first step in elucidating the steps necessary to prevent recurrence in EOC patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oncogenes and Tumor Suppressors DDB2 Suppresses Tumorigenicity by Limiting the Cancer Stem Cell Population in Ovarian Cancer

Ovarian cancer is an extremely aggressive disease associated with a high percentage of tumor recurrence and chemotherapy resistance. Understanding the underlying mechanism of tumor relapse is crucial for effective therapy of ovarian cancer. DNA damage-binding protein 2 (DDB2) is a DNA repair factor mainly involved in nucleotide excision repair. Here, a novel role was identified for DDB2 in the ...

متن کامل

Autocrine interleukin-23 promotes self-renewal of CD133+ ovarian cancer stem-like cells

Cancer stem cells (CSCs) are a group of cells which possess the ability of self-renewing and unlimited proliferation. And these CSCs are thought to be the cause of metastasis, recurrence and resistance. Recent study has found that pro-inflammatory cytokine and chemotactic factor mediate the self-renewing and differentiation of most of CSCs. Thus we speculate that ovarian cancer stem cells (OCSC...

متن کامل

DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer.

UNLABELLED Ovarian cancer is an extremely aggressive disease associated with a high percentage of tumor recurrence and chemotherapy resistance. Understanding the underlying mechanism of tumor relapse is crucial for effective therapy of ovarian cancer. DNA damage-binding protein 2 (DDB2) is a DNA repair factor mainly involved in nucleotide excision repair. Here, a novel role was identified for D...

متن کامل

LncRNA Miat Promotes Proliferation of Cervical Cancer Cells and Acts as an Anti-apoptotic Factor

There are a sub-population of cells in tumor tissues known as cancer stem cells (CSCs) which have similar features with stem cells, including self-renewal and differentiation capacity. Recently, it was established that not only stem cells factors such as Oct4, but also ES-associated lncRNAs are contributing to various regulatory aspects of CSCs. Myocardial infarction associated transcript (MIAT...

متن کامل

The Effect of Plant-derived Compounds in Targeting Cancer Stem Cells

Background Cancer stem cells (CSCs) are a small subpopulation of cancer cells with self-renewal and differentiation ability. Furthermore, CSCs are resistant to chemoradiotherapy due to their high level of detoxifying enzymes, strong DNA repair abilities, and high drug efflux capacity. Objective Therefore, CSCs are supposed to account for cancer initiation, progression, metastasis, recurrence, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell cycle

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 2013